Berechnungen mit der Zinseszinsformel

$$K_n = K_0 \cdot \left(1 + \frac{p}{100}\right)^n$$

⇒ allgemeine Wachstumsformel

$$K_n = K_0 \cdot q^n$$

gesucht: K_n

$$K_n = K_0 \cdot q^n$$

gesucht: K_0

$$K_n = K_0 \cdot q^n \quad |: q^n$$

$$\Leftrightarrow K_0 = \frac{K_n}{q^n}$$

Es fehlt: Laufzeit n!!!

 \Rightarrow Logarithmen

gesucht: q

$$K_n = K_0 \cdot q^n \mid : K_0$$

$$\Leftrightarrow q^n = \frac{K_n}{K_0} \mid \sqrt[n]{}$$

$$\Leftrightarrow q = \sqrt[n]{\frac{K_n}{K_0}}$$

K_n : Kapital nach n Zeiteinheiten

 K_0 : Anfangskapital

n: Anzahl der Zeiteinheiten

p: Prozentsatz

q: Wachstumsfaktor

gesucht: p

$$K_n = K_0 \cdot q^n$$

$$\Leftrightarrow q = \sqrt[n]{\frac{K_n}{K_0}}$$

$$mit \quad q = 1 + \frac{p}{100}$$

$$\Leftrightarrow$$
 $p = (q-1) \cdot 100$

$$\Leftrightarrow p = \left(\sqrt[n]{\frac{K_n}{K_0}} - 1\right) \cdot 100$$