Kugel

Die Kugel ist ein Körper, bei dem jeder Punkt der Oberfläche gleich weit vom Körpermittelpunkt entfernt ist.

Kugel


Aufgabe 1: Trage die ganzzahligen Werte der Ergebnisse unten ein.

Formeln:
  • r = Radius; d = Durchmesser; M = Mittelpunkt
  • Volumen: V = $\frac{4}{3} \cdot \pi \cdot r^3$
  • Oberfläche: O = $4 \cdot \pi \cdot r^2$
Beispiel:
  • r = 4 cm
  • Volumen: V = $\frac{4}{3} \cdot \pi \cdot (4 cm)^3$ = ,08 cm³
  • Oberfläche: O = $4 \cdot \pi \cdot (4 cm)^2$ = ,06 cm²

Versuche: 0


Aufgabe 2: Klick das richtige Volumen und die richtige Oberfläche an.

Oberfläche = cm²
richtig: 0 | falsch: 0
Volumen = cm³
richtig: 0 | falsch: 0

Aufgabe 3: Trage die fehlenden ganzzahligen Werte ein. (Die aufgeführten Kommastellen sind gerundet.)

Radius r  cm  dm  m  m
Durchmesser d  cm  dm  m  m
Volumen V  cm³  dm³  m³  m³
Oberfläche O  cm²  dm²  m²  m²


richtig: 0 | falsch 0


Aufgabe 4: Wie schwer ist eine Granitkugel mit einem Durchmesser von 25 cm? 1 cm³ Granit wiegt 2,8 g. Runde auf eine Stelle nach dem Komma.

Antwort: Die Kugel wiegt  kg.

Versuche: 0


Aufgabe 5: Trage die fehlenden ganzzahligen Werte für Volumen und Oberfläche des folgenden Körpers ein. Auchte auf die Maßeinheit.

Halbkugel ausgehöhlt

Antwort: V = ,44 cm³; O = ,35 cm²

Versuche: 0


Aufgabe 6: Die halbkugelförmige Kuppel einer Kapelle soll neu gestrichen werden. Sie hat einen Umfang von 22 m. Wie viel Quadratmeter Decke sind zu streichen. Trage den fehlenden ganzzahligen Wert ein.

Antwort: Es sind ,03 m² Decke zu streichen.

Versuche: 0


Aufgabe 7: Trage die fehlenden ganzzahligen Werte für Volumen und Oberfläche des folgenden Körpers ein.

Halbkugeln

Antwort: V = ,85 cm³; O = ,47 cm²

Versuche: 0


Aufgabe 8: Eine Kugel hat eine Oberfläche von 1995 cm². Wie groß ist ihr Durchmesser? Trage den fehlenden ganzzahligen Wert ein.

Antwort: Der Durchmesser beträgt ,2 cm.

Versuche: 0


Aufgabe 9: Trage die fehlenden ganzzahligen Werte für Volumen und Oberfläche des folgenden Körpers ein.

Halbkugel und Halbzylinder

Antwort: V = ,49 cm³; O = ,45 cm²

Versuche: 0


Aufgabe 10: Zwei Kugeln haben jeweils einen Durchmesser von 15 cm. Die eine ist aus Stahl (Dichte 7,85 g/cm³), die andere aus Polystyrol (Dichte 1,05 g/cm³). Wie groß ist der Gewichtsunterschied zwischen diesen beiden Kugeln? Runde auf zehntel kg.

Antwort: Die Stahlkugel wiegt  kg mehr als die Polystyrolkugel.

Versuche: 0


Aufgabe 11: Trage die fehlenden ganzzahligen Werte für Volumen und Oberfläche des folgenden Körpers ein.

Halbkugel-Kegel

Antwort: V = ,07 cm³; O = ,89 cm²

Versuche: 0


Aufgabe 12: Die orange Halbkugel hat ein Volumen von . Die Höhe des blauen Zylinders beträgt die doppelte Länge des Halbkugelradius. Wie groß ist die Mantelfläche des Zylinders? Trage den fehlenden ganzzahligen Wert ein.

Die Mantelfläche des Zylinders beträgt , cm2


richtig: 0 | falsch: 0


Aufgabe 13: Von einer Kugel, die genau 1072 g wiegt, wird behauptet, dass sie aus Silber sei. Silber hat eine Dichte von 10,49 g/cm³. Welchen Durchmesser müsste diese Kugel haben, sollte sie tatsächlich aus Silber sein. Runde auf eine Stelle nach dem Komma.

Antwort: Eine echte Silberkugel hätte einen Durchmesser von  cm.

Versuche: 0


Aufgabe 14: Die untere Hälfte eines kugelförmigen Aquariums hat einen Rauminhalt von 39 Litern. Welchen Innendurchmesser hat das Glas an dieser Stelle, an der sich das Wasser am weitesten ausbreitet? Runde auf ganze Zentimeter.

Aquario do Belchior
von: centroacademico
Lizenz: Public Domain
Original: Hier

Das Glas hat an dieser Stelle einen Innendurchmesser von  cm.

Versuche: 0


Aufgabe 15: In einen Zylinder mit einem Innendurchmesser von 9,6 cm wird eine Stahlkugel gelegt. Der Wasserpegel steigt um 2,7 cm. Welchen Durchmesser hat die Kugel? Runde auf eine Nachkommastelle.


nicht maßstabsgetreu

Die Kugel hat einen Durchmesser von cm.

Versuche: 0


Aufgabe 16: Ein Fußball hat einen Durchmesser von 22 cm. Wieviel cm2 Leder werden benötigt, wenn bei der Produktion mit einem Verschnitt von 17 % gerechnet wird. Runde auf ganze cm2.

Für jeden Ball werden dann cm2 Leder berechnet.

Versuche: 0


Aufgabe 17: Aus einem 6 mm dicken Tropfen (kugelförmig) ist eine Seifenblase mit einem Durchmesser von 12 cm entstanden. Welche Wandstärke hat die Seifenblase? Runde auf 4 Nachkommastellen.

Universe In A Bubble (Daily Sketch 32)
von: GDJ
Lizenz: Public Domain
Original: Hier

Die Wand der Seifenblase ist mm dick.

Versuche: 0


Aufgabe 18: Eine ein Kilogramm schwere Kugel besteht aus einem Material, dass g/cm3 wiegt. Welchen Durchmesser hat diese Kugel? Runde auf eine Nachkommastelle.

Die Kugel hat einen Durchmesser von cm.


richtig: 0 | falsch: 0


Aufgabe 19: Am Äquator hat die Erde einen Radius von 6371 km. Berechne den Umfang des 52,5ten Breitenkreis, auf dem Berlin liegt. Runde auf ganze Kilometer.

Der Umfang des 52,5ten Breitenkreis beträgt  km.

Versuche: 0


Aufgabe 20: Ein Weißer Zwerg ist ein kleiner, sehr kompakter alter Stern. Es gibt im Universum welche, die haben die Masse unserer Sonne, etwa 2 Quadrilliarden Tonnen. Das ist ungefähr das 333 000-fache unserer Erdmasse. Während unsere Sonne jedoch einen Radius von rund 700 000 km aufweist, haben manche Weiße Zwerge nur den anderthalbfachen Radius der Erde. Wenn man von diesen Daten ausgeht: Wie viel mal größer ist die Dichte eines solchen Weißen Riesen im Vergleich zur Dichte der Erde? Trage die fehlende ganze Zahl ein.

Weißer Zwerg

Dichte =  Masse
Volumen

Die Dichte eines solchen Weißen Zwergs ist ,7 Mal so groß wie die Dichte der Erde.

Versuche: 0


Aufgabe 21: Die Erde hat eine Dichte von durchschnittlich 5,5 g/cm3. Welche Masse hätte eine Billardkugel mit einem Durchmesser von 57,2 mm, wenn sie aus der Materie eines Weißen Zwerges (Aufgabe oben) bestände.

Masse = Dichte · Volumen

Eine Billardkugel hätte eine Masse von ,5 kg.

Versuche: 0